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1. Introduction

Recent research [1–3] has established that any excitation operating at a time scale much faster
compared to the natural time scale of a system may bring forth non-trivial changes in the
dynamics of nonlinear systems. In recent literature, such excitations are termed as fast-vibration.
Fast-vibration have been shown to effectively change certain characteristics of mechanical systems
such as equilibrium states [4], linear stiffness [5], damping [6] and natural frequencies [7]. Suitably
designed fast excitation may also significantly influence certain nonlinear features like restoring
and energy dissipation characteristics, frequency response and bifurcation behaviour of nonlinear
systems. Very elaborate discussions on the numerous applications of fast-vibration in engineering
systems may be found in Ref. [8].
In the present article, a very useful application of fast-vibration in producing steady linear

motion [8,9] is considered. The fundamental model of such system consists of a rigid slider placed
on a friction surface. When the rigid slider is subjected to high frequency tangential and normal
excitations bearing a constant phase difference, it moves in one direction with a constant average
velocity (with a small high-frequency fluctuation). Thomsen [9] considers an almost similar
system, where instead of two phase shifted excitations, the motion is generated due to the
asymmetry of co-efficient of friction in forward and backward movement. In this context, one
may compare the well-developed theory of ultrasonic motor (USM) [10] with what are considered
see front matter r 2004 Published by Elsevier Ltd.
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in Ref. [9] and the present letter. Compared to the traditional USM, the driving principles
considered here and also in Ref. [9] are not based on Rayleigh wave propagation.
As the driving force in the system considered here is derived from friction force, it is very much

important to model the friction process reliably. A great number of recent phenomenological
friction models consider only the macroscopic-degrees-of-freedom. This implies that all
microscopic-degrees-of-freedom are much faster than the macroscopic ones. Such an assumption
breaks loose when the velocity of sliding becomes comparable to the ratio of microscopic
length scale to macroscopic time scale. This microscopic length scale may be of the same
order of magnitude as the size of the asperities of the contact surface or the correlation length
of the surface roughness. Therefore, when velocity becomes very low, one has to pay
attention also in the microscopic-degrees-of-freedom, which are in general faster in dynamics.
Moreover, coming to the understanding of the effect of fast vibration, consideration of the
interaction of fast microscopic-degrees-of-freedom and the fast excitation becomes important.
Few recent models of friction incorporate the microscopic-degrees-of-freedom, and such models
are known as dynamic models of friction [11–13]. In the present article, two different types of
models of friction, namely Coulomb’s dry friction model and LuGre dynamic friction models [11]
are considered.
The organisation of the article is as detailed below. In Section 2, two fundamental models

consisting of a rigid slider subjected to phase-shifted tangential and normal fast excitation of
equal frequencies. In model 1, Coulomb dry friction model is considered, where as in model 2,
friction is modelled according to LuGre dynamic friction model. The method of direct partition of
motion (MDPM) [8] is used to obtain the steady-state motion of the system. A theoretical analysis
is carried out to study the effect of the phase difference between the normal and the tangential
excitations as well as the strength of fast excitation on the dynamics of the system. In Section 3,
the mathematical model of a practically realisable system is considered. In this system, an
embedded high-frequency resonator generates the tangential fast excitation. Though a two-
degrees-of-freedom model describes the original system, a simplified single-degree-of-freedom
model, equivalent to the model considered in Section 2, is shown to represent a close
approximation of the original system. Section 4 discusses some practical aspects of the physical
realisation of the theory. Effect of different frequencies in the normal and the tangential directions
are also discussed.
2. Fundamental models: rigid slider with phase-shifted tangential and normal fast excitation

2.1. Model 1: Coulomb friction model

The mathematical model of the system consisting of a rigid slider on a frictional surface and
subjected to tangential and normal fast excitation is depicted in Fig. 1. The slider is excited by a
high-frequency tangential force of amplitude F�

T and frequency o and held against a frictional
surface by a constant normal load N0: The amplitude and frequency of fast excitation in the
normal direction are DN and o; respectively. The high-frequency component of normal load bears
a constant phase shift f with respect to the tangential excitation. Equation of motion of the
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Fig. 1. Mathematical model of the system.
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system is given by

m
d2x

dt2
þ FfN0 þ DN sinðot þ fÞg ¼ F�

T sin ot; (1)

where F is friction force per unit normal load and defined as

F ¼ m sgn
dx

dt

� �
;

with m as the coefficient of friction of the frictional surface.
Eq. (1) may be written in the following non-dimensional form:

€X þ Sgnð _X Þf1þ a sinðOtþ fÞg ¼ FT sinðOtÞ; (2)

where

X ¼
x

x0
; x0 ¼

mN0

mo2
0

; a ¼
DN

N0
; O ¼

o
o0

; FT ¼
F�

T

mo2
0x0

:

o0 is an arbitrary reference frequency and the ‘dot’ denotes differentiation with respect to the non-
dimensional time t ¼ o0t:
According to the MDPM [8], when Ob1 and FTO�1 	 Oð1Þ or greater, one may split the

motion into the slow ðZÞ and the fast ðCÞ component in the following way:

X ¼ ZðtÞ þ O�1Cðt;OtÞ; (3)

with the assumption that the fast time average of the fast component of the motion is zero, i.e.,

1

2p

Z 2p

0

Cðt;OtÞdðOtÞ ¼ 0:

Substituting Eq. (3). in Eq. (2), one obtains the following equation governing the slow dynamics
of the system:

€Z þ 1�
2

p
cos�1

_Z

q

� �
�

2a
p

sin cos�1
_Z

q

� �� �
sinðfÞ

� �
¼ 0; (4)
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where

q ¼ O�1FT

Eq. (4) describes the dynamics of the system in the natural time scale (fast time scale) of the
system. From Eq. (4), one observes that at steady state the slider moves with a constant average
velocity V that may be obtained by solving the following nonlinear algebraic equation:

1�
2

p
cos�1 V

q

� �
�

2a
p

sin cos�1 V

q

� �� �
sinðfÞ ¼ 0: (5)

When velocity is small, i.e., dZ=dt5q; one obtains a linear equation describing the slow dynamics
as

€Z þ
2 _Z

pq
¼

2

p
a sinðfÞ: (6)

Under such circumstances, the average steady-state sliding velocity V of the slider is obtained as

V ¼ qa sinðfÞ: (7)

2.2. Model 2: LuGre friction model

When LuGre friction model is considered, the equation of motion of the system depicted in Fig.
1 is given by

m
d2x

dt2
þ ðN0 þ DN sinðot þ fÞÞF ¼ F�

T sin ot;

F ¼ s�0z þ s�1
dz

dt
;

dz

dt
¼

dx

dt
�

s�0z

m
dx

dt

����
����; ð8Þ

where F is friction force due to unit normal load, and s�0 and s�1 are LuGre model parameters. The
variable z is a state variable as described in the LuGre model, which considers that any frictional
interface is made of elastic spring like bristles [11,12]. Physically, z describes the average deflection
of the interface bristles.
Eq. (8) may be written in the following non-dimensional form:

€X þ ð1þ a sinðOtþ fÞÞ s0Zb þ s1 _X �
s1s0Zb

m
j _X j

� �
¼ FT sinðOtÞ;

dZb

dt
¼ _X �

s0j _X j

m
Zb; ð9Þ

where the non-dimensional terms are as defined below:

X ¼
x

x0
; Zb ¼

z

x0
; s0 ¼

N0s�0
mo2

0

; s1 ¼
N0s�1
mo0

; x0 ¼
N0

mo2
0

and o0 is an arbitrary reference frequency.
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According to the MDPM [8], one may split X and Zb into slow (subscripts s) and fast
components (subscripts f ) as follows:

X ¼ X sðtÞ þ O�1X f ðt;OtÞ;

Zb ¼ ZsðtÞ þ O�1Zf ðt;OtÞ; ð10Þ

with the assumptions that the fast time averages of the fast components of motion are zero, i.e.,

1

2p

Z 2p

0

X f ðt;OtÞdðOtÞ ¼ 0

and

1

2p

Z 2p

0

Zf ðt;OtÞdðOtÞ ¼ 0:

Substituting Eq. (10) in Eq. (9), one obtains

€X s þ
1

2p

Z 2p

0

IðyÞdy ¼ 0;

_Zs ¼ _X s �
1

2p

Z 2p

0

RðyÞdy; ð11Þ

where

IðyÞ ¼ ð1þ a sinðyþ fÞÞ s0Zs þ s1ð _X s � q cos yÞ �
s1s0Zs

m
j _X s � q cos yj

� �

and

RðyÞ ¼
s0j _X s � q cos yj

m
Zs:

After computing the above integrals, one finally obtains the following equation:

€X s þ s0Zs þ s1 _X s �
s1qa
2

sin f�
s1s0
m

Zsð f 1ð
_X sÞ þ f 2ð

_X sÞÞ ¼ 0;

_Zs ¼ _X s �
s0
m

Zs f 1ð
_X sÞ; ð12Þ

where

f 1ð
_X sÞ ¼

1

p
f _X sðp� 2y1Þ þ 2q sin y1g;

f 2ð
_X sÞ ¼

a sin f
2p

fq sin 2y1 � 4 _X s sin y1 � qðp� 2y1Þg;

y1 ¼ cos�1
_X s

q

� �
:
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Now substituting

Y ¼ s0Zs

and

� ¼
1

s0

in Eq. (12) one obtains

€X s þ Y þ s1 _X s �
s1qa
2

sin f�
s1
m

Y ð f 1ð
_X sÞ þ f 2ð

_X sÞÞ ¼ 0;

� _Y ¼ _X s �
Y

m
f 1ð

_X sÞ: ð13Þ

As s0 is generally a large quantity, �51 and one may find that Eq. (13) is in standard singular
perturbation form. Thus, the slow manifold of the system is described by

Y ¼
m _X s

f 1ð
_X sÞ

: (14)

After enabling the following coordinate and time transformation [14]:

Y � ¼ Y �
m _X s

f 1ð
_X sÞ

;

t� ¼
t
�

and treating velocity as constant, one obtains the boundary layer equation as

dY �

dt�
¼ �

Y �f 1ð
_X sÞ

m
: (15)

The trivial equilibrium of the boundary layer equation is uniformly asymptotically stable for all
velocities. Therefore, according to Tikhonov theorem [15] the slow manifold describes the
reduced-order model of the system accurate to � order. Thus, the slow dynamics of the system is
given by

€X s þ _X s

m
f 1

�
s1f 2

f 1

� �
�

s1qa
2

sin f ¼ 0: (16)

Finally, one obtains the steady-state average constant velocity of sliding ðV Þ by solving the
following equation:

V
m
f 1

�
s1f 2

f 1

� �
�

s1qa
2

sin f ¼ 0: (17)

For small velocity V5q; one obtains the linearised dynamics as described by

€X s þ
pm
2q

_X s �
1
2
s1qa sin f ¼ 0: (18)
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Thus, for small velocity V5q; one obtains

V ¼
s1aq2 sin f

pm
: (19)
2.3. Results and discussion: effect of parameters

It has already been mentioned that due to the simultaneous normal and tangential high-
frequency excitations, the slider moves with a constant average velocity. In support of the above
statement, direct numerical simulation of equation of motion (2) and (9) are carried out in
MATLAB SIMULINK using ‘‘Dormand-Prince 8(5,3)’’ algorithm and the simulated displace-
ment time histories are depicted in Fig. 2. From Fig. 2, one may have already noticed that a high-
frequency component is always present in the time history. The amplitude of this high-frequency
component depends on the frequency of tangential excitation. The amplitude of high-frequency
component in the system response decreases with the increasing excitation frequency. However,
for significant effect of fast vibration one should keep the strength of the excitation q ð¼

FTO�1Þ 	 Oð1Þ: In what follows, the effect of different input parameters on the steady-state
motion of the system is discussed.

2.3.1. Model 1
So far as the steady-state average velocity of the slider is concerned, it is apparent from Eqs. (5)

and (7) that the strength of the excitations q ð¼ FTO�1Þ and a are the important parameters along
with the phase difference f between the normal and tangential excitations. From Eqs. (5) and (7),
one infers that the highest average velocity V is obtained when the excitations are in quadrature.
Results obtained by solving Eq. (5) are plotted in Fig. 3 depicting the variation of V with f; q and
Fig. 2. Displacement time history of the slider. a ¼ 1; f ¼ p=2: —, FT ¼ 10;O ¼ 10; - - - -, FT ¼ 1000; O ¼ 1000: (a)

Coulomb friction model; (b) LuGre friction model, s0 ¼ 100; s1 ¼ 1; m ¼ 0:4:
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Fig. 3. Variation of average sliding velocity with different parameters. —, analytical; ’; numerical simulation: (a)

a ¼ 1; q ¼ 1; (b) f ¼ 0:5; q ¼ 1; (c) f ¼ 1:57; a ¼ 1:
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a: These results are also compared with that obtained from the direct numerical simulation of
equation motion (2). From Fig. 3, one infers that in general the average sliding velocity increases
with the strength parameters a and q: One should also note that Fig. 3(a) is plotted for the values
of f ranging between 0 and p; for which the sliding velocity V is positive. For values of f between
�p and 0; one obtains negative velocity of sliding. One may observe from Eq. (7) that for some
parameter values (particularly for small q and a), the average velocity V is linearly proportional to
the strength parameters q and a:
It may be mentioned here that the equations and expressions obtained hitherto in the section

are for no-load condition, i.e. when no external load tends to impede the motion of the system.
Under the action of an impeding external load (say constant) one obtains the load speed curve
depicted in Fig. 4(a) by solving the following equation:

1�
2

p
cos�1 V

q

� �
�
2a
p

sin cos�1 V

q

� �� �
sinðfÞ þ L ¼ 0; (20)

where L is the non-dimensional load and the non-dimensionalisation is done with respect to
mx0o2: From Eq. (20), one obtains the following expression for the ‘‘blocking force’’ (the amount
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Fig. 4. Speed-load characteristics of the slider. a ¼ 1; f ¼ p=2: —, q ¼ 1; - - - - q ¼ 2: (a) Coulomb model; (b) LuGre

model, s1 ¼ 1; m ¼ 0:4:
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of external tangential load to cause the complete seizure of the motion) Lb:

Lb ¼
2a
p

sin f: (21)

In the original dimensional form, ‘‘blocking-force’’ may be expressed as

Dimensional blocking force ¼
2

p
mDN sin f: (22)
2.3.2. Model 2
For the LuGre model of friction, the variation of V with f; a;m; and q are obtained by solving

Eq. (17) and depicted in Fig. 5. From Fig. 5, one observes that the highest velocity of sliding is
possible for f ¼ p=2: The velocity V increases with the strength of the excitations a and q; and
decreases with increasing value of m: Such relationships are also obtained from the approximate
linearised equation (19) (valid for only small values of q and a).
In case of the LuGre friction model, the speed-load characteristics of the system is obtained by

solving the following equation:

V
m
f 1

�
s1f 2

f 1

� �
�

s1qa
2

sin fþ L ¼ 0: (23)

Typical speed load characteristics of the slider for the LuGre friction model are depicted in
Fig. 4(b).
The non-dimensional ‘‘blocking force’’ is obtained as

Lb ¼
s1qa
2

sin f: (24)
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Fig. 5. Variation of average sliding speed with system parameters in case of LuGre model of friction. —, analytical; ’;
numerical simulation ðs0 ¼ 100Þ: (a) s1 ¼ 1; m ¼ 0:4; a ¼ 1; q ¼ 1; (b) s1 ¼ 1; m ¼ 0:4; a ¼ 1; f ¼ 1:57; (c) s1 ¼
1; m ¼ 0:4; q ¼ 1; f ¼ 1:57; (d) s1 ¼ 1; a ¼ 1; q ¼ 1; f ¼ 1:57:
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In terms of the dimensional parameters, expression for ‘‘blocking force’’ becomes

Blocking force ¼
1

2

s�1
m

F�
T

o
DN sin f: (25)

From Eq. (25), one may note that in case of the LuGre model, ‘‘blocking force’’ depends on the
tangential excitation as well as the inertia of the slider. This is in contrast with the case of model 1,
where the blocking force (Eq. (22)) does not depend on the tangential excitation parameters or
mass of the slider. The dependence of the blocking force on the mass of the slider seems to be
somewhat unrealistic. However, such dependence is removed if the LuGre model parameter s�1 is
proportional to the mass of the slider. Moreover, it is interesting to note that unlike in the case of
model 1, blocking force does not show any dependence on co-efficient of friction when LuGre
friction model is considered.
3. Model of a practically realisable system

In the fundamental model considered in the previous section, the rigid slider is subjected to fast-
excitations in the tangential and the normal directions. Though it is possible to generate the
normal excitation (along with a pre-load) using a piezoelectric actuator, particularly when the
slider moves along a guide-way without any clearances, generation of the tangential excitation is
involved. One possible solution of generating the tangential excitation may be using an embedded
resonator, which is realised by a mechanical resonator clamped at one end inside the slider and
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Fig. 6. Mathematical model of a practically realisable system.
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driven near high-frequency resonance by a piezo exciter. The present section considers such a
practically realisable system depicted in Fig. 6. The mathematical model of the original system
may be represented by a two-degrees-of-freedom system. However, it is shown that
an approximate single-degree-of-freedom model, equivalent to what has been considered in
Section 2, suffices for some practical purposes.
3.1. Mathematical model and equation of motion

The equation of motion of the system depicted in Fig. 6 may be written as

ðM þ mÞ
d2X

dt2
þ 2mðN0 þ DN sinðot þ f1ÞÞsgn

dX

dt

� �
þ m

d2Y 1

dt2
� Ao2 sin ot

� �
¼ 0; (26)

m
d2Y 1

dt2
þ c

dY 1

dt
þ kY 1 þ m

d2X

dt2
¼ mAo2 sin ot: (27)

One obtains the following non-dimensional form of equation of motion:

€x þ sgnð _xÞf1þ a sinðOtþ f1Þg þ rmf €y1 � aO2 sin Otg ¼ 0; (28)

€y1 þ 2xOn _y1 þ O2
ny1 þ €x ¼ aO2 sin Ot; (29)
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where the non-dimensional quantities are as defined below:

x ¼
X

x0
; y1 ¼

Y 1

x0
; On ¼

1

o0

ffiffiffiffi
k

m

r
; rm ¼

m

m þ M
;

a ¼
A

x0
; O ¼

o
o0

; x0 ¼
2mN0

ðm þ MÞo2
0

; a ¼
DN

N0
; t ¼ o0t:

3.2. Single-degree-of-freedom approximation

From Eq. (28), one may note that the second term of the LHS is significantly small compared to
the other terms (as ao1 and Ob1). Thus substituting

€x ¼ �rmf €y1 � aO2 sin Otg (30)

in Eq. (29), one obtains

ð1� rmÞ €y1 þ 2xOn _y1 þ O2
ny1 ¼ ð1� rmÞaO2 sin Ot: (31)

The steady-state solution of Eq. (31) is obtained as

y1 ¼ Y 0 sinðOt� yÞ; (32)

where

Y 0 ¼
ð1� rmÞaO2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðO2
n � O2ð1� rmÞÞ

2
þ ð2xOnOÞ

2
q ; tan y ¼

2xOnO

O2
n � O2ð1� rmÞ

:

Using Eq. (32) in Eq. (28), one obtains

€x þ sgnð _xÞf1þ a sinðOtþ f1Þg ¼ FT sinðOt� y1Þ; (33)

where

FT ¼ rmO2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY 0 cos yþ aÞ2 þ ðY 0 sin yÞ2

q
;

tan y1 ¼
Y 0 sin y

Y 0 cos yþ a
:

Using the following time translation:

Ot� y1 ¼ Ot�;

one transforms Eq. (33) into

d2x

dt�2
þ sgn

dx

dt�

� �
f1þ a sinðOt� þ fÞg ¼ FT sin Ot�; (34)

where

f ¼ f1 þ y1:

Eq. (34) is an approximate single-degree-of-freedom model of the system. In order to validate the
approximation, Eqs. (28), (29) and (34) are numerically simulated. The results of numerical
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Fig. 7. (a,b) Displacement and velocity time history of the slider with embedded resonator. —, two-degree-of-freedom

model, - - -, single-degree-of-freedom model. rm ¼ 0:1; On ¼ O ¼ 100; a ¼ 0:01; a ¼ 1; f1 ¼ 0:85; x ¼ 0:05:
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simulation are plotted in Fig. 7 to compare the velocity and displacement time histories of the full
and the approximate systems. From Fig. 7, one observes little difference in the steady-state
velocity time histories between the full and the approximate models. However, there exists a
constant steady state difference between the displacement characteristics.
One may note that the approximate single-degree-of-freedom model (34) of the system is

equivalent to the fundamental model given by Eq. (2). It is also possible to establish the similar
equivalence for LuGre friction model as well. Therefore, it is reasonable to consider the
fundamental models for the quantitative and qualitative estimation of the steady-state velocity
characteristics of the system. However, for studying displacement characteristics, one requires a
complete model of the system.
4. A physical example and discussions

In this section an example system is considered for discussing some important practical aspects
of the physical implementation of the theory. The example system is similar to what has been
shown in Fig. 6. The frictional load due to the weight of the slider is neglected as this frictional
load may be reduced to a very low value by transferring the weight of the slider through rolling
friction contact. The parameter values of the system considered are listed in Table 1.
Selection of the frequency of excitations and the amplitude of the base excitation given to the

horizontal resonator is very important. As mentioned in Section 2.3, for smooth oscillation free
movement of the slider it is required that q ð¼ O�1FT Þ 	 Oð1Þ; and the frequency should be high
enough to keep the amplitude (non-dimensional value 	 qO�1) of the high-frequency ðOÞ
vibration of the slider below the acceptable limit. In order to produce substantial horizontal force,
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Table 1

Mass of the slider M 1 kg

Mass of the oscillator m 0.1 kg

Natural frequency of the oscillator ðk=mÞ
1=2 3500 rad/s

Damping factor of the oscillator 0:5c=ðkmÞ
1=2 0.05

Normal preload N0 1.0N

Amplitude of normal load variation DN 1.0N

Amplitude of base excitation given to the oscillator A 100mm
Frequency of fast excitation o 3500 rad/s

Phase f1 0

Coefficient of friction m 0.1

o0 ¼ 1 rad=s:
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excitation frequency in the tangential direction is tuned to the natural frequency of the oscillator.
However, while choosing the excitation frequency, one should also keep in mind that very high-
frequency tangential excitation gives rise to very strong horizontal excitation, and that the system
should be capable of withstanding that load.
With the parameter values assumed above, the system (according to the theory described here)

is equivalent to the fundamental system shown in Fig. 1, where a rigid slider of mass 1.1 kg is
driven by the tangential and the normal excitations of magnitude 910:95 sinð3500tÞ and 1þ
sinð3500t þ 0:733Þ Newton, respectively. Here one may check that the non-dimensional quantity
q ¼ O�1FT (strength of tangential fast excitation) is 1.301, which satisfies the requirement that
q 	 Oð1Þ: Thus, solving Eq. (5) one finds the average velocity of sliding as 0.12m/s, and this is also
verified by numerically simulating Eqs. (26) and (27). The amplitude of high-frequency oscillation
is 67:6mm in the present example. If the amplitude of high-frequency oscillation in the present
example is not acceptable, it can be reduced to a lower value by driving a high-frequency
resonator with a base excitation of lower amplitude and higher frequency. For example, the
amplitude of high-frequency oscillation can be reduced to 6:76mm by driving a 5570.42Hz
resonator by a base excitation of amplitude 10mm and frequency 35000 rad/s. In doing so, one of
course keep q and f; and hence the sliding velocity same. However, this reduction in the
amplitude of high-frequency oscillation is obtained only at the cost of stronger horizontal force of
excitation (which is now increased to 9109.5N).
It may be mentioned here that the hardware realisation of the model discussed above is not very

difficult. The normal force excitation may be generated by a piezoelectric actuator, which
produces 1N preload along with a variable load of amplitude 1N and frequency 557Hz. The
tangential excitation is produced by driving the base of a resonator (with the natural frequency
557Hz and damping factor 0.05) by a piezoelectric exciter (fixed to the slider) at 557Hz frequency
and amplitude 0.1mm. If both the actuator and the exciter are driven by the same signal source, it
may be possible to maintain the same frequency and a constant phase shift between the two signal
channels. Of course, maintaining the same frequency in the normal and tangential directions is
very important for producing the steady sliding of the slider. In case of a very small difference
between the tangential and normal excitation frequencies, instead of unidirectional steady sliding,
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low-frequency oscillations of the slider takes place around an equilibrium (may be shifted from
the initial position).
However, when it is not possible to synchronize the excitations at equal frequencies, the slider

can still move with a constant velocity if the tangential and the normal excitation frequencies are
substantially different and the phase difference is proper. It may be noted here that the present
theoretical formalism cannot accommodate the situation when the fast vibration frequencies in
the two directions are different, because such a condition involves more than two disparate time
scales. Under such circumstances, a more general theoretical setup incorporating multiple time
scales is required. Development of such a methodology is beyond the scope of the present letter. It
may also be mentioned here that the reduction of the two-degrees-of-freedom model to an
approximate single-degree-of-freedom model is not valid for totally different frequencies of the
tangential and the normal excitations. However, remaining in the present theoretical setup, one
can analyse the qualitative effect of very slight difference in the frequencies of excitations (see
Appendix A).
Effect of using different frequencies in the normal and the tangential excitations is studied by

numerically simulating Eqs. (28) and (29) with the non-dimensional parameter values calculated
from the values given in Table 1. The difference of excitation frequencies in the normal and the
Fig. 8. Effect of different frequencies of normal and tangential excitations on the dynamics of sliding. O ¼ On ¼

3500; a ¼ 0:00055; m ¼ 0:1; rm ¼ 0:09; a ¼ 1:
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tangential directions are modelled by introducing a parameter l; which is defined as the ratio of
the normal and the tangential excitation frequencies. Results of numerical simulations for
different parameter values are shown in Fig. 8. Figs. 8(a) and (b) depict the variation of the
average steady-state sliding velocity with l and f1; respectively. From these figures, one may
observe that equal frequencies in both the directions ðl ¼ 1Þ produce the strongest effect both in
terms of sliding velocity as well as load-carrying capacity [i.e. blocking force] (results are not
shown). Though steady sliding is still possible for different frequencies in the normal and the
tangential directions, corresponding velocities of sliding (see Fig. 8(d) for displacement time
histories of the slider) and the load carrying capacities are substantially weaker as compared to
that are obtainable for equal frequencies. However, as shown in Fig. 8(c), a very small difference
in the excitation frequencies results in low-frequency oscillation of the slider instead of steady
unidirectional motion. The frequency of this oscillation is exactly equal to the frequency
difference, and the amplitude of the oscillation decreases with the increasing amount of frequency
detuning.
5. Conclusions

A rigid slider moves with a constant velocity on a friction surface when simultaneously excited
by high-frequency tangential and normal excitations bearing a constant phase difference. Two
different fundamental models are considered in the present article for studying such effect. Two
different models of friction, namely, the Coulomb dry friction model and the LuGre dynamic
friction models are considered to study the effect of different parameters on the velocity of sliding.
It is shown that the maximum possible velocity of sliding is achieved when the excitations are in
quadrature.
A two-degrees-of-freedom model of a practically realisable system consisting of an embedded

resonator for generating the tangential excitation is also considered. It is shown that so far as the
prediction of the steady-state sliding velocity is concerned, an approximate single-degree-of-
freedom model of the system suffices to a great extent and more importantly, this approximate
model is equivalent to the fundamental model described earlier.
Finally, an example system is considered to discuss the physical implementation of the theory.

The effect of using different frequencies in the normal and tangential excitations is also discussed.
It is observed that though steady sliding may be produced by two substantially different
frequencies of excitation, the corresponding sliding is not strong enough (both in terms of velocity
of sliding and load carrying capacity) as compared to that can be produced by synchronous
frequencies of excitations. However, when equal frequencies are used in both the directions, one
should be careful enough not to allow even a very slight difference in the frequencies, because
that, instead of steady sliding, may give rise to low-frequency oscillation of the slider.
Appendix A

In the main text of the present letter it has been shown that when the excitation frequencies in
the normal and the tangential directions are only slightly different, the slider either sticks or
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oscillates around an equilibrium position. A theoretical explanation of the phenomenon is given
here. As it has been shown in Section 3 that an original two-degrees-of-freedom model can be
effectively reduced to an equivalent single-degree-of-freedom model, the present discussion starts
with the fundamental model described by Eq. (2). When a very small difference of the excitation
frequencies in the normal and the tangential directions are allowed, Eq. (2) may be rewritten as

€X þ Sgnð _X Þf1þ a sinðOtþ DOtþ fÞg ¼ FT sinðOtÞ;

or

€X þ Sgnð _X Þf1þ a sinðOtþ cðtÞÞg ¼ FT sinðOtÞ; (A.1)

where

cðtÞ ¼ DOtþ f;

and DO is the small difference in the normal and the tangential excitation frequencies. Thus under
such circumstances, one may consider that the phase difference between the normal and the
tangential excitations is a slowly varying function of time (cðtÞ). Using the similar procedure as
described in Section 2, one finally represents the slow dynamics of the system as

€Z þ 1�
2

p
cos�1

_Z

q

� �
�

2a
p

sin cos�1
_Z

q

� �� �
sinðcðtÞÞ

� �
¼ 0: (A.2)

Eq. (A.2) is nonlinear and can be numerically simulated to study the slow dynamics of the slider.
Eq. (A.2) suggests that steady unidirectional sliding is not possible when the excitation frequencies
are only slightly different. To investigate further into the qualitative nature of the motion,
Eq. (A.2) is linearised (which is valid at least for small values of a) to yield

€Z þ
2

p

_Z

q

� �
¼

2a
p

sinðDOtþ fÞ: (A.3)

From Eq. (A.3), one may conclude that the slider oscillates at low frequency ðDOÞ:
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